Embedded World 2024
We look forward to seeing you at Embedded World 2024 in Nuremberg, 9-11 April 2024. We are in Booth 622 in Hall 4. Please call by!
We look forward to seeing you at Embedded World 2024 in Nuremberg, 9-11 April 2024. We are in Booth 622 in Hall 4. Please call by!
This is the first in an occasional series of news items showcasing some developed technology (i.e. internal intellectual property). To start the series is a Delta-Sigma Modulator for a Fractional-N PLL for generating carrier frequencies in the range of tens of Gigahertz. This has been proven in 2 designs on different process nodes so far.
The circuit is a 22-bit third-order MASH (‘Multi-stAge noise Shaping’) pipelined Delta-Sigma Modulator, in Verilog RTL. The design challenge here is reaching an input clock frequency of 600MHz or more.
There is selectable first-, second- or third-order derivatives of dithering, or the raw LFSR dither signal itself, or dithering can be disabled. Dither gain and initialisation MASH accumulator values as well as 6-bit integer and 20-bit fraction values are the other programmable parameters. The design includes Built-In Self-Test (BIST) hardware for at-speed testing.
One implementation was with a ‘vanilla’ (standard threshold voltage) library in a 130nm process. For the purposes of reporting comparable performance, the clean layout has timing closure at 746MHz slow corner, 125oC when with zero setup clock uncertainty and 0% OCV derating. Extra margin quickly brings this frequency down! Higher performance could have be achieved with manual intervention in layout because of the regular structure of the MASH which constitutes a significant proportion of the design but this has not been necessary so far.
An application example, also purely for illustrative purposes is as follows: given an integer value 12 and a fraction value of 345678, it will provide a delta-sigma sequence with average value 12+345678/2^20 = 12.32966423. Used within a Fractional-N PLL with a reference frequency of 500MHz, the PLL would then generate an output frequency of 6.164832GHz. A simple alternative to the Delta-Sigma modulator could generate a sequence of 12s and 13s such that the long-term average is 12.32966423 but this would be produce spurious tones in the PLL’s output. Instead, the MASH produces noise-shaped sequences (with values spread between 10 and 16) such that spurious noise is significantly reduced.